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Abstract

Early risk stratification in intensive care units remains
particularly challenging for conditions like septic shock,
which affects 8 — 10% of patients at admission and has
a hospital mortality rate close to 40%. Although clinical
and biological variables are widely used for mortality risk
assessments, ECG data, despite systematically collected,
are never used in this setting. The aim of this study is to
assess the association between ECG-derived features and
the one-year mortality risk following hospital admission
using unsupervised clustering and compares risk groups
based on ECG-related and clinical variables individually,
as well as through an aggregated group strategy, using
Kaplan-Meier survival analysis. Results show that ECG
features effectively distinguish between high- and low-risk
patients of one year mortality highlighting their potential
in future survival prediction models.

1. Introduction

Effective early mortality risk stratification in Intensive
Care Units (ICUs) poses a significant challenge, as prompt
decision-making can profoundly affect patient progno-
sis. While several studies have examined early mortality
among patients admitted to ICUs concentrating on short
termed outcome [1], far less is understood about patient
trajectories following ICU and hospital discharge, typi-
cally one-year post-discharge. To address this gap, the
French and European Outcome Registry in Intensive Care
Units (FROG-ICU) study was initiated. This prospec-
tive, observational, multicenter cohort study seeks to de-
termine the incidence of, and identify risk factors for, mor-
tality during the year following ICU discharge (more de-
tails about the study are provided in Section 2). Sev-
eral research studies have leveraged the FROG-ICU cohort
to investigate patient outcomes following ICU and hospi-
tal discharge [2-6], to cite a few. Most of these works
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have focused on biological and clinical variables (e.g., de-
mographics, comorbidities, severity scores, platelet count,
glucose, and lactate levels), either to identify patient
groups with differing one-year survival rates [4], or to eval-
vate the impact of specific diseases like diabetes [5], as
well as certain invasive procedures such as tracheostomy
[6]. Only a limited number of studies have examined Elec-
troCardioGramme (ECG) features, focusing on specific
markers such as QT interval prolongation [2] and atrial fib-
rillation [3]. Furthermore, similar patterns are observed in
other French multicenter cohorts [7], which focuses specif-
ically on patients with septic shock and also rely on clin-
ical and demographic variables for prognostic evaluation,
while ECG-related features remain never used. Therefore,
motivated by (i) the limited exploitation of ECG features as
structured and complementary inputs for long-term follow-
up and (ii) the availability of ECG recordings as part of
routine monitoring in ICUs, which makes such data read-
ily accessible for analysis, this study aims to investigate the
added value of ECG features for improving long-term sur-
vival prediction. We focus on patients with septic shock,
a frequent and serious condition in critical care, defined
by a sepsis plus either hypotension (refractory to intra-
venous fluids) or hyperlactatemia [8] and affecting around
8—10% of ICU patients and associated with high mortality
rates (up to 40%) [9]. Specifically, this study investigates
the prognostic value of ECG-derived features by applying
unsupervised clustering techniques alongside with survival
analysis, to patients admitted with septic shock.

2. Database

The FROG-ICU dataset consists of 2,087 ICU patients
admitted for a range of critical conditions including acute
respiratory failure, neurological conditions, septic shock,
cardiac arrest, and others. For each patient in this dataset,
an electronic case report form was completed to document
key information related to their ICU stay and one-year
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follow-up. At the time of inclusion, data collected include
demographics, past medical history, ICU admission diag-
nosis, hemodynamic and respiratory parameters (invasive
and non-invasive) as well as severity scores such as SAPS-
I [10] and Charlson Comorbidity Index (CCI). Among
those ICU patients, the current study concerns 468 pa-
tients who were diagnosed with septic shock and for whom
ECG recordings via the CarTouch device (Cardionics S.A.,
Brussels, Belgium) are acquired. On average, these 468
patients underwent their first ECG four days after ICU ad-
mission, while 75% of them had received their first ECG
recording by day five. ECG recordings are then used to
compute a set of ECG features such as cardiac conduc-
tion phases (atrial/ventricular depolarization, atrioventric-
ular conduction, etc.). Septic shock carries an exception-
ally high mortality burden. In our cohort (468 patients),
overall mortality for septic shock patients reached 44%, as
depicted in Figure 1. Within the ICU itself, 25% of the
septic shock patients died, second only to the 30% ICU
mortality observed in cardiac arrest cases. Besides, 19%
of the latter patients died during the year after ICU dis-
charge, placing it among the highest post-ICU death rates
recorded.
The variables considered in the studied cohort fall into two
main categories: clinical and ECG, that are summarized
below:

¢ Clinical variables encompass patient demographics,
admission details, comorbidities, and chronic treatments.
These include age, sex, initial admission unit, and in-
clusion criteria (mechanical ventilation for more than 24
hours or the use of inotropes/vasopressors), as well as
severity scores such as SAPS II and CCI. The dataset
includes a mix of variable types: continuous variables
(e.g., age, SAPS 1II), taking values in R, and binary vari-
ables (e.g., comorbidities such as hypertension, diabetes,
or HIV; chronic treatments such as beta-blocker use), en-
coded as O (absence) or 1 (presence). It is important to note
that the accessibility of these variables in clinical settings
can vary. For instance, the SAPS 1II score relies on standard
blood tests typically available upon admission. In contrast,
obtaining accurate data on comorbidities and chronic treat-
ments often depends on a thorough medical history, which
may be difficult to obtain promptly in emergency settings.

* ECG features comprise a total of 308 continuous vari-
ables (each taking values in R), organized as follows: 288
measurements derived from the 12 standard ECG leads,
with 24 features per lead. These include wave ampli-
tudes (in microvolts) and durations (in milliseconds) for
key ECG waves (P, QRS, and T) as well as durations of
specific segments such as QT interval, and ST segment de-
viation. In addition, 20 global features are included, such
as heart rate, RR interval, electrical axes (average direc-
tion of the heart’s electrical activity during specific phases

of the cardiac cycle), QT dispersion, and various corrected
QT intervals (e.g., Bazett’s and Fridericia’s formulas).
Dead: In ICU: 118 (25%)
206 (44%) After ICU: 88 (19%)

Septic Shock patients:
468
Alive:
262 (56%)

Figure 1. Septic shock cohort (% over the septic cohort)

3. Methodology

As previously mentioned, the aim of this study is to as-
sess the extent to which ECG-derived data can provide in-
sights into patient survival outcomes after ICU or hospital
discharge, either by matching the predictive power of com-
monly used clinical variables or by demonstrating their
added value when combined with these clinical variables
to enhance survival prediction. To this end, an unsuper-
vised clustering strategy based on survival analysis is pro-
posed and illustrated in Figure 2. Clustering is performed
on datasets that are deliberately left unaltered (except for
the handling of missing values), ensuring maximal objec-
tivity and maintaining a blind approach throughout the pro-
cess. As depicted in Figure 2, the proposed survival pre-
diction pipeline comprises the following processing steps:

i. Preprocessing of ECG features: This step primar-
ily involves removing ECG features with missing values,
which originate from issues such as acquisition errors, sig-
nal artifacts, or computational problems (e.g., division by
zero). This step is essential to reduce the risk of intro-
ducing bias into the subsequent survival analysis. Missing
values are most commonly found in temporal interval vari-
ables, such as the corrected QT, ST intervals, and in the
P-wave axis. After preprocessing, the number of retained
ECG features is reduced from 308 to 165 comprising am-
plitudes and durations of the P, QRS, and T waves across
the 12 leads, as well as global variables such as heart rate,
RR interval, and electrical axes (QRS and T).

ii. Dimensionality reduction: Principal Component
Analysis (PCA) is applied to enhance clustering perfor-
mance by minimizing redundancy and highlighting the
most significant variables, capturing at least 80% of the
cumulative variance in the data.

iii. Clustering: The extracted principal components are
used as input to a k-means clustering algorithm to iden-
tify distinct patient groups (i.e., clusters). To determine
the optimal number of clusters, k£ (denoted k; for ECG-
based clusters and ko for clinical-based ones), Pairwise
log-rank tests [11] are then conducted to assess statisti-
cal differences between the computed Kaplan—Meier sur-
vival curves, using the associated p-values as the evalu-
ation metric. The optimal number of clusters is selected
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Figure 2. The proposed survival analysis pipeline.

as the value of k& for which all pairwise comparisons are
statistically significant (p < 0.05). If multiple values of
k satisfy this condition, the one with the smallest mini-
mum p-value across all comparisons is chosen, indicating
the strongest overall separation between survival profiles.
Once the optimal number of clusters is determined, a boot-
strap resampling strategy is applied to evaluate the stabil-
ity and robustness of the clustering results. Specifically,
for each clustering approach (i.e., ECG-based and clinical-
based), 80% of the population is randomly sampled and the
clustering procedure is repeated over 100 trials. Thus, the
clustering approaches result in two distinct sets of groups,
E ={Fy,...,Eg, }and C = {C4,...,Cy,}, where the
m-th element F,, (respectively Cy,), withm € {1,..., k}
and k € {kq, k2}, denotes the m-th ECG-based (clinical-
based) cluster.

iv. Cluster aggregation: After identifying the two sets
FE and C, the objective of this step is to evaluate the impact
of aggregating the ECG-based and clinical-based groups
on survival prediction performance. To this end, we cre-
ate L = |E| x|C| groups where |-| denotes the cardinality
of the argument set. The (m + (n — 1)k;)-th aggregated
group (i.e., cluster) with 1 < m < kjand1 < n < ko,
corresponds to the intersection F,, N C,,. Subsequently,
pairwise log-rank tests are performed over the resulting L
groups to assess the survival differences. Any pairs of ag-
gregated clusters that do not exhibit statistically significant
separation are then merged to enhance interpretability.

v. Survival Analysis: The goal of this final step is to
assess differences in survival between the sets of resulting
clusters. These differences are evaluated through a log-
rank test on the corresponding Kaplan—Meier curves [11].
The obtained clusters can then be used for survival follow-

up.
4. Results and discussion

According to the processing pipeline illustrated in Fig-
ure 2, once the dimensionality reduction step is completed,
the clustering phase involves selecting the optimal num-
ber of clusters. This is achieved using a grid search over
candidate values k € {2,3,4,5}, with the optimal value
determined based on the log-rank test (p < 0.05). For
both ECG features and clinical variables, k¥ = 2 yields
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Figure 3. Kaplan-Meier Survival Curves over One-Year

Post ICU or Hospital Discharge based on (a) ECG features,
(b) clinical variables. HR, and LR represent, High and
Low Risk groups, respectively. A indicates the survival
gap; *p < 0.05, **p < 0.005. (n) denotes the number of
patients in each group.
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Figure 4. Kaplan-Meier Survival Curves over One-Year
Post ICU or Hospital Discharge based on clusters aggrega-
tion. HR, MR, and LR represent High, Middle, and Low
Risk groups, respectively. A indicates the survival gap;
*p < 0.05, **p < 0.005. (n) denotes the number of pa-
tients in each group.

the most distinct cluster separation: Ejy and FE; clusters
using ECG features, and Cy and C; ones using clinical
variables. To evaluate clustering stability, 100 bootstrap
trials are performed on randomly selected samples each
comprises 80% of the original population, with cluster-
ing re-applied to each sample. Patient-level consistency in
cluster assignments is then assessed across all trials. ECG-
based clustering shows relatively high stability, with ap-
proximately 4% of patients being misclustered and fewer
than 1% consistently assigned to incorrect clusters. In con-
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trast, clinical-based clustering exhibits greater variability,
with 19% of patients inconsistently assigned and 7% fre-
quently misclustered. The log-rank test is then used to as-
sess the statistical significance of the gap, denoted here
by A, between the Kaplan—Meier curves associated with
each cluster. Cluster Ey(respectively Cy) corresponds to
a group with a lower one-year survival probability of 0.43
(0.48), High Risk (HR) groups, while F; (respectively C)
corresponds to a higher probability of 0.62 (0.64), Low
Risk (LR) groups, as shown in Figure 3 (a)-(b). Clus-
ters induced from the same variables exhibits statistically
significant gap A that is equal to 0.19 for the ECG-based
clusters and 0.17 for the clinical-based ones. By aggre-
gating the ECG and clinical clusters, in order to investi-
gate the extent to which combined ECG and clinical in-
sights can further improve the separability between HR
and LR groups, a set of four aggregated groups are formed:
{Em N Ch}(mn)e{o,1}x{0,1}- Survival analysis and log-
rank testing of these combinations yield three risk cate-
gories as shown in Figure 4: a HR group, Fy N Cp, a LR
group, E1 N Cp with respective one-year survival proba-
bility of 0.38 and 0.66; and a Middle-Risk (MR) group
exhibiting a one-year survival probability of 0.56. The
MR group is formed as (Eo N C1) N (Ey N Cp) since the
two groups, Ey N Cy and E; N Cy, display no statisti-
cally significant difference in survival (p > 0.05). Fur-
thermore, Figures 3 and 4 clearly shows, on one hand, that
using only ECG features to define High-Risk (HR) patient
groups yields survival outcomes comparable to those ob-
tained using only clinical variables (0.43 for Fy and 0.48
for Cy). This indicates that ECG features contain relevant
information for reliably predicting one-year survival prob-
ability after ICU or hospital discharge. On the other hand,
when both ECG and clinical insights are considered to-
gether to define HR patient groups, a lower survival proba-
bility is observed for the HR group (0.38 for EyNCy). This
suggests that a multimodal analysis can further enhance the
identification of patients at risk, providing a more accurate
assessment of survival outcomes.

5. Conclusion

This study explored the potential of admission ECG
features, an underutilized yet easily accessible resource,
for predicting one-year survival after ICU or hospital dis-
charge in patients with septic shock. Results demonstrated
that ECG variables offered predictive performance com-
parable to that of standard clinical variables. Addition-
ally, a cluster aggregation strategy revealed that combining
ECG- and clinical-based insights enhanced risk stratifica-
tion, particularly for identifying high-risk patients. A ded-
icated processing pipeline was developed to support this
analysis using the FROG-ICU database. Future work will
focus on integrating advanced machine learning methods,

such as Cox proportional hazards models and survival deep
learning approaches, to further improve predictive accu-
racy.
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